Bilberries are a close relative to blueberries however they are native to Europe. They have been utilized because they are high in antioxidants which contain anthocynanins and polyphenols.
Bilberry is a dark blueberry that grows on shrubs in the genus of Vaccinium. It has been utilized in the European medicinal system for many centuries. Today you can find these berries in Northern Asia, Europe, North America and has been added as a delicious addition to preserves, jams and pies.
Cancer Preventative – Commercially prepared grape (Vitis vinifera), bilberry (Vaccinium myrtillus L.), and chokeberry (Aronia meloncarpa E.) anthocyanin-rich extracts (AREs) were investigated for their potential chemopreventive activity against colon cancer. Bilberry contained five different anthocyanidins glycosylated with galactose, glucose, and arabinose. Chokeberry anthocyanins were cyanidin derivatives, monoglycosylated mostly with galactose and arabinose. The varying compositions and degrees of growth inhibition suggest that the anthocyanin chemical structure may play an important role in the growth inhibitory activity of commercially available AREs.
Anthocyanins are potent antioxidants and may be chemoprotective. However, the structure−function relationships are not well understood. The objectives of this study were to compare the chemoprotective properties of anthocyanin-rich extracts (AREs) with variable anthocyanin profiles to understand the relationship between anthocyanin chemical structure and chemoprotective activity, measured as inhibition of colon cancer cell proliferation. Anthocyanins played a major role in AREs’ chemoprotection and exerted an additive interaction with the other phenolics present. Statistical analyses suggested that anthocyanin chemical structure affected chemoprotection, with nonacylated monoglycosylated anthocyanins having greater inhibitory effect on HT-29 cell proliferation, whereas anthocyanins with pelargonidin, triglycoside, and/or acylation with cinnamic acid exerted the least effect. These findings should be considered for crop selection and the development of anthocyanin-rich functional foods.
(Article)
Antioxidant– Edible berry anthocyanins possess a broad spectrum of therapeutic and anti-carcinogenic properties. Berries are rich in anthocyanins, compounds that provide pigmentation to fruits and serve as natural antioxidants. Anthocyanins repair and protect genomic DNA integrity. Earlier studies have shown that berry anthocyanins are beneficial in reducing age-associated oxidative stress, as well as in improving neuronal and cognitive brain function. Six berry extracts (wild blueberry, bilberry, cranberry, elderberry, raspberry seeds, and strawberry) were studied for antioxidant efficacy, cytotoxic potential, cellular uptake, and anti-angiogenic (the ability to reduce unwanted growth of blood vessels, which can lead to varicose veins and tumor formation) properties.
Anti – Tumor – Endothelioma cells pretreated with OptiBerry showed a diminished ability to form hemangioma and markedly decreased tumor growth by more than 50%. In essence, these studies highlight the novel anti-angiogenic, antioxidant, and anti-carcinogenic potential of a novel anthocyanin-rich berry extract formula, OptiBerry.
(Article)
Alzheimer’s – A growing body of epidemiological evidence suggests that fruit and vegetable juices containing various phenolic compounds can reduce the risk of Alzheimer’s disease (AD). As the altered amyloid precursor protein (APP) processing leading to increased β-amyloid (Aβ) production is a key pathogenic feature of AD, we elucidated the effects of different polyphenols on neuroprotection and APP processing under different in vitro stress conditions. These data suggest that anthocyanin-rich bilberry and blackcurrant diets favorably modulate APP processing and alleviate behavioral abnormalities in a mouse model of AD.
(Article)
Cardioprotective Effects – All over the world, CVD is a leading cause of death. Major risk factors of CVD include central obesity, diabetes, hypertension, elevated levels of lipids, and high levels of uric acid. Increased oxidative stress may also contribute, and inflammation is a key factor. Atherosclerosis, the main underlying factor in CVD, is an inflammatory process associated with oxidative processes in and damage to the vascular endothelium. Therefore, the anti-inflammatory and antioxidant effects of anthocyanins are of relevance to potential cardioprotective effects of bilberry and other berries. Antihypertensive, lipid-lowering, hypoglycemic, and antiobesity effects would also be cardioprotective.
Hypoglycemic Effects – The bilberry plant is reputed to possess antidiabetic properties, and its berries and leaves (as well as those of other Vaccinium species) have been used for centuries to ameliorate the symptoms of diabetes . In a survey of 685 Italian herbalists, bilberry ranked fourth in a list of herbal remedies recommended for improvement of glycemic control. Type 2 diabetes is associated with increased oxidative stress, inflammation, and dyslipidemia, and is accompanied by an increased risk of CVD, cancer, and vision loss through cataract and retinopathy.
Improved Vision – Bilberry has a long history of use for eye disorders and in promoting vision. There have been numerous studies of the effects of bilberry on various aspects of vision and ocular disorders, including cataract, retinopathy, macular degeneration, and night vision . Many studies have shown positive effects, including improvement in retinal abnormalities, increased capillary resistance, slowing of progression of lens opacity and myopia, and improved dark adaptation. For example, in a study of 50 patients with mild senile cataract, 4 months of supplementation with bilberry anthocyanins plus vitamin E was reported to have a 97% success rate in preventing cataract progression.
Mandatory FDA Disclaimer: Not intended to diagnose, treat, cure or prevent any disease.
Mandatory FDA Disclaimer: Not intended to diagnose, treat, cure or prevent any disease.